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Three questions concerning the interpolation of a set (x;, y;, z;), i = L,..., N, in R*
by a convex function of two variables (z = f(x, y)) are examined. A given set of N
points can be interpolated by a convex function if and only if it can be interpolated
by a convex piecewise planar function. Every possible piecewise planar inter-
polation of the data is determined by a triangulation of the (x, y) points in the
plane. An algorithm is presented which builds up an acceptable triangulation by
sequentially adding points. The algorithm either terminates as soon as it discovers
that the interpolation is impossible or terminates with the desired triangulation.
Numerical experiments are presented which indicate the effectiveness of the
algorithm. Suppose that the points in the plane, (x;, y;),{ = L,..., N, are fixed and it
is desired to minimize a function f(z,, z,,..., zy) subject to the constraint that the
triples (x;, v;,2;) can be interpolated by a convex function. Convexity can be
represented by a set of linear inequality constraints among the z’s but many of
these constraints may be redundant. For efficiency it is important to reduce the list
to the independant constraints and some minimization algorithms actually require
independent constraints. An efficient algorithm for generating the set of independent
linear inequalities is given. Finally it is shown that the number of independent
constraints depends on the location of the (x, ) points and varies from zero to
O(N?). It is conjectured that the expected number of independent constraints for N
points chosen randomly from a uniform distribution on a square is O(N2 log N).
Both theoretical and numerical justification for the conjecture are given. Finally it
is shown that there are O(N?) independent constraints when the points are arranged
in a square (or triangular) lattice.

1. INTRODUCTION

This paper examines three problems concerning the interpolation of a
finite set of points (x;, y;,z;) in R*® with a convex function z = f(x, y). The
first problem is to decide whether a convex interpolation is possible for a
given set of data. The second problem is to determine the minimal set of
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independent, linear inequalities that represents the convexity constraint when
the (x, y) values are fixed but the z values are variable. Finally, the number
of such linear inequalities as a function of the location of the (x, y) points is
investigated.

For comparison, the corresponding problems for points in the plane
(z = f(x)) are also described.

2. Fixep DATA

Given fixed data with one independent variable (i.e., (x;, z;), i = 1, 2,..., N)
then a convex interpolating function (Interpolant) z = f(x) exists if and only
if all the points lie on the lower boundary of their convex hull. This lower
boundary is a piecewise linear function with the line segments defined
between data points, so a convex interpolant exists if and only if a convex
piecewise linear interpolant exists. Since there is only one piecewise linear
interpolant whose line segments are defined between pairs of data points, it is
only necessary to determine whether this function is convex. In particular it
is only necessary to verify that when two line segments meet at a point they
satisfy the condition that the slope of the left line segment is less than the
slope of the right line segment.

If there are two independent variables the situation is more complicated.
As before, a convex interpolant exists if and only if all the points lie on the
lower boundary of their convex hull. This lower boundary is a piecewise
planar function whose faces are polygons (usually triangles) with data points
for vertices. Thus if there is any convex interpolating function there must be
a convex piecewise planar one with vertices at the data. Since the convex
hull of a set of points is unique the corresponding convex piecewise planar
function is also unique. Unfortunately there may be many piecewise planar
interpolating functions with vertices at the data.

Removing the z values from the given data yields a set of points in the
plane. Associated with each triangulation of these (x, y) points is a unique
piecewise planar function with vertices at the (x, y, z) data. (On each triangle
the function is defined as the piecewise planar interpolant of the data values
associated with the vertices of the triangle.) Provided all the faces of the
piecewise planar function are triangles, then the triangulation associated with
the function is also unique. In the special case of nontriangular faces, more
than one triangulation is associated with the same function. Thus the
problem reduces to determining whether an appropriate triangulation of the
(x, y) data exists. We will now describe an algorithm for finding the convex
piecewise planar interpolant (when it exists) by finding a corresponding
triangulation.
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DEFINITION 1. An edge of a triangulation of the (x, y) points is called
concave (convex, flat) with respect to the (x, y,z) data, if the edge is an
interior edge and the angle between the two planes of the associated
piecewise planar interpolant which meet along the edge is concave (convex,
flat).

Every interior edge of the desired triangulation (if it exists) is convex (or
flat). The basic idea of the algorithm is to start with any triangulation of the
(x, y) data and repeatedly try to replace concave edges until the desired
triangulation is found. Associated with any concave edge in the current
triangulation is a quadrilateral made up of the two triangles based on the
edge. The given edge is one of the diagonals of the quadrilateral. If this
quadrilateral is convex then the concave edge can be replaced in the
triangulation by the other diagonal. The new edge will always be convex so
the new triangulation has fewer concave edges than the old one. If the
quadrilateral itself contains reflex or straight angle then the desired
triangulation does not exist.

For efficiency grounds it is important to impose some order on the
concave edges. The easiest way to do this is to order the (x, y) points in
some manner and then recursively build up an acceptable triangulation as
the points are sequentially included. This is the same approach used by
Renka |2] to compute the Thiessen triangulation of a set of points in the
plane. As each point is added it is included in the triangulation by adding
some edges. If any of these edges is concave then a convex interpolation is
impossible (since the quadrilaterals associated with added edges always have
a reflex angle). Otherwise all the quadrilaterals which include the new point
are checked to see if their diagonals are concave or convex. Concave edges
are replaced (if possible) and this process is iterated untill all the edges are
convex or the triangulation is known to be impossible. If all the edges are
convex then the next point is added to the triangulation.

Only a few modifications were needed to make Renka’s software solve the
new problem. It was necessary to check the edges added to the triangulation
as a new point was added to see if they were convex. It was also necessary to
change the edge swap test so that it checked whether the edge was convex or
concave. As was shown by Renka, the cost of computing the desired
triangulation depends strongly on the order in which the points are added to
the triangulation. For Renka’s problem it was best to order the points by
increasing x value. For this problem it seems to be better to order them by
increasing z value. Tables 1-IV show the number of edge swaps needed to
find the desired triangulation. The N(x, y) points were generated randomly
from a uniform distribution on the unit square. The z values were generated
as function values of the (x, y) points. All the functions used were convex so
that the desired triangulation always existed. (Nonconvex data would simply
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TABLE 1

S p)=(x—03)"+ (y—04)

Unsorted Sorted
N Swaps o Swaps g
10 6.0 81 2.7 47
20 22.0 2.82 17.3 1.69
50 98.3 2.49 56.3 2.49
100 211.7 8.01 159.0 3.27
200 489.3 12.50 387.3 6.13
500 1363.3 14.26 1213.3 20.29
TABLE 11
f(x )= (x—03)" + (y— 04)*
Unsorted Sorted
N Swaps o Swaps o
10 6.7 94 2.7 1.70
20 23.0 1.63 11.3 4.19
50 101.3 2.35 39.0 2.45
100 227.0 9.93 106.0 7.07
200 506.0 8.29 281.7 8.58
500 1363.3 23.44 918.7 16.13
TABLE 11
Sfx ¥)=(x—03)
Unsorted Sorted
N Swaps ) Swaps g
10 7.0 2.94 1.0 .82
20 21.7 8.06 12.3 4.03
50 91.3 7.85 30.7 3.68
100 235.0 16.31 55.3 6.13
200 495.3 16.03 122.7 4.99
500 1355.3 55.53 326.0 6.53
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TABLE IV
Sl )= (x—03)*

Unsorted Sorted

N Swaps o Swaps o
10 1.3 3.40 1.0 0.00
20 24.7 8.73 9.7 2.87
50 88.3 4.50 24.0 3.74
100 235.3 16.82 48.0 5.35
200 498.7 15.28 113.7 4.78
500 1351.7 51.97 308.3 5.44

terminate early.) The effect of presorting the (x, y) points by increasing z
value is also displayed. For each function and each value of N three
repetitions were performed and the average number of edge swaps and the
standard deviation of the three values were computed.

The percentage savings in edge swaps achieved by presorting the points
ranged from 11% to a factor of 7 (86%). The number of edge swaps needed
to find the desired triangulation is an increasing function of N. The number
of edge swaps needed per added node is either a constant or a slowly
growing function of N for the cases tested. The total cost is no worse than
O(N log N), which is the cost of sorting the data. In the worst case it is
possible to arrange the data so that every possible edge is included in the
triangulation at some time during the algorithm even when the data are
presorted. Thus the worst case has O(N?) edge swaps.

3. FIXED x’s AND )’S

Suppose it is desired to minimize a function f(z,, z,,..., Zy) subject to the
constraint that the triples (x;, y;,z;),i=1, 2,..., N, can be interpolated by a
convex function, where the (x, y) values are fixed. Convexity is equivalent to
a set of linear inequalities among the z’s (with coefficients in the x’s and y’s).
In the one dimensional case (z = f(x)) every pair of x’s which contains a
third x between them represents a convexity constraint on the z values. If

X; < Xp < X
then
(= %)z — 2) < (2, — 2)*(x, — x)).

There are O(N?®) constraints, one for each triple of x’s. Many of these
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constraints are not independent. A minimal constraint is represented by a
pair of x’s which contains exactly one x in between (i.e., three consecutive
x’s). The minimal constraints form a complete and independent set of
constraints in that all z values which satisfy the minimal constraints can be
interpolated by a convex function and for each minimal constraint there is a
set of z's which violates only that constraint. There are always O(N) minimal
constraints. On efficiency grounds alone it is important to restrict
consideration to the minimal constraints and some constrained minimization
algorithms require independent constraints.

In two dimensions (z = f(x, y)) any three (x, y) points which contain a
fourth point in their convex hull represents a linear inequality constraint.
There may be as many as O(N*) constraints. Most of these are redundant
too. The minimal inequalities are represented as either triples which contain
exactly one point inside (but not on the edge) of their convex hull (which
will be called minimal triangles) or pairs of points which contain exactly one
point in between (which will be called minimal line segments). Unlike the one
dimensional case it is not easy to determine the minimal inequalities
represented by a given set of (x, y) points. The following algorithm generates
all the minimal constraints. It sequentially checks through all pairs of points
first to see if they are the endpoints of a minimal line segment. If not, it then
finds all the minimal triangles which are based on the points. To prevent
counting triangles three times the third point of the triangle must have an x
value between the x values of the given pair of points. At one point the
algorithm uses a special kind of sorting technique called insertion sort. In an
insertion sort a sequence of records is sorted by sequentially inserting the
new record in the proper spot so that the records that have already been
processed are correctly sorted.

Assume that the (x, y) points are sorted by increasing x value. If two
points have the same x value then they are sorted by increasing y value.
Define p; to be the point (x;, y;).

Algorithm to Determine All Minimal Constraints
Fori=1,N—2do
For j=i+2,N do
Let L be the line segment joining p; and p;.
Separate the points p,, k=1i+ 1, j— 1 into three subsets:
A the set of points above the line segment L.
O the set of points on L.
B the set of points below L.

If there is more than one point in O then there are no minimal
constraints based on p; and p;.



58 DAVID S. SCOTT

If there is exactly one point in O then p;, p;,
and that point form a minimal line segment and there
are no minimal triangles based on these points.

If there are no points in O then

For each point p in 4 and B define /(p) to be the acute
angle between the line segments p;p and L and
similarly define (p) to be the acute angle between
the line segments p;p and L.

For the sets 4 and B separately

Sort the points by increasing / value. Two points with
the same / value should be sorted by increasing r value.

Do an insertion sort on the sorted points to resort the
points by increasing r value. Two points with the same
r value should be sorted by increasing / value.

Any point inserted in the second slot during the insertion
sort forms a triangle with p; and p; which contains

only the point currently in the first slot. Unless this
fourth point is on an edge, these points form a minimal
triangle.

As a point is inserted during the sort, points earlier in the list must have
both a smaller / value and a smaller r value than the point being inserted and
no other points can have both a smaller / and r value. A given point p, is
inside the triangle p; p; p precisely if both /(p,) and r(p,) are smaller than
I(p) and r(p) (respectively). This establishes the correctness of the
algorithm. Of course in practice it is not necessary to perform the entire
insertion sort. It is only necessary to keep track of the first two slots.

4. VARIABLE (x, y) POINTS

The number of minimal convexity constraints for a fixed set of N(x, y)
points can be determined by the algorithm given in the previous section. The
actual number of such constraints can vary enormously depending on the
location of the (x, y) points. The minimum possible number is zero, which is
obtained by any set of (x, y) points all of whose points lie outside the convex
hull of the remaining points. This happens, for example, if all the points lie
on a circle. The maximum possible number is O(N?) since that is the order
of the set of all possible triangles. O(N?) is actually obtained when N — 1
points are spread uniformly on a circle and the Nth point is placed at the
center. One fourth of all the triangles with vertices on the circle contain the
center point.
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What is the expected number of minimal constraints if the (x, y) points
are chosen randomly from a uniform distribution on the unit square? The
probability of three randomly chosen points lying on a line is zero and so the
expected number of minimal line segments is zero. The conjectured number
of minimal triangles is O(N? log N). This comes from analyzing how many
minimal triangles would be found by the algorithm given in the previous
section. If the number of points in the upper set 4 is m and if each possible
ordering of the r values before the insertion sort is equally likely then the
expected number of insertions into the second element of array is

1/2+1/3+1/4+ -+ 1/m=logm+d

where d is less than 1.

For a given pair of points p; and p; the number of points in between is
qg=j—1i—1, some of which are in the upper set and some of which are in
the lower set. If @ is the number of points in 4 and b is the number of points
in the set B, then a + b =g and

c=1/2+1/3+ -+ 1/a+1/2+1/3 + -+ 1/b

is the expected number of minimal triangles (the contribution from a (or 5)
is taken to be zero when a < 2 (or b < 2)). It can be easily be verified that ¢
is minimized (with value slightly less than log ¢) when a=g (or b=g). c is
maximized (with value less than 2logg) when a=>5. So the expected
number of minimal constraints is bounded by

> 2ilog (N —i).

i=1,N~-1

TABLE V

Number of Minimal Constraints as a Function of N

NREP N AVG AVG/N*log N
20 15 97.10 0.159360
20 20 230.35 0.192232
15 25 409.27 0.203433
15 30 670.73 0.219117
10 35 994.00 0.228228
10 40 1364.40 0.231168
5 45 1852.00 0.240255
5 50 2360.80 0.241389
5 55 2970.80 0.245071
5 70 5104.60 0.245206
4 100 11486.00 0.249415
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This in turn can be bounded by an integral which leads to the result that the
expected number of minimal constraints is O(N* log N).

The entire analysis is rigorous except the assumption that the orderings
generated by the [ values and the r values are independent. This is already
false in the case of two points in the 4 set. However, it seems that the
expected correlation is not strong enough to change more than the coefficient
of the bound.

Some numerical experiments using the above algorithm were performed to
measure the dependence of the number of minimal triangles as a function of
N the number of points. The points were chosen randomly from a uniform
distribution on the unit square. The experiment was repeated several times
with each value of N. NREP is the number of repetitions and AVG is the
average number of minimal triangles (Table V). The results clearly support
the claim that the expected number of minimal constraints is O(N? log N).

5. SQUARE LATTICE

A popular choice of points for interpolation is a square lattice of n> =N
points. Square lattices contain both minimal line segments (three consecutive
points on a line) and minimal triangles (triangles with exactly one point
inside-not on an edge). In this section it will be shown that the number of
minimal lines segments and the number of minimal triangles are both O(N?).
The following definitions and lemma will be useful in proving the theorem.

DEeFINITION 2. A line segment connecting two lattice points is simple if
there are no other lattice points on the line segment.

DEerFINITION 3. The central sublattice of an n by n square lattice is the
central n/3 by n/3 sublattice.

LEMMA 4. Given a square lattice which contains N =n® points, the
number of simple line segments is O(N?).

To prove this lemma we will identify the square lattice with the points in
R? which have integer coordinates between 0 and n — 1.

Proof. A point (x,y) with integer coordinates forms a simple line
segment with the origin, (0, 0), if and only if x and y are relatively prime.
For a given x the number of y’s which are relatively prime to x is propor-
tional to ¢(x)/x, where ¢ is the Euler phi function. The proportionality
constant is n, the number of possible y values. For a certain sequence of x’s
this ratio becomes arbitrarily small. However, the number m of simple line
segments based at the origin is proportional to the average value of ¢(x)/x
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for x’s between 1 and n — 1. This is known by number theorists to be O(1)
(with coefficient 6/72, see [1, p. 62]). The proportionality constant is N, the
number of lattice points. Thus the origin is one end of O(N) simple line
segments. Every lattice point is at one corner of a square sublattice of size at
least n/2. Thus every lattice point is at one end of O(N) simple line
segments. Since there are O(N) lattice points, there are O(N?) simple line
segments in the lattice.

THEOREM 5. Given a square lattice with N =n’ points then both the
number of minimal line segments and the number of minimal triangles is
O(N?).

Progf. The maximum possible number of minimal line segments is the
same as the number of pairs of lattice points, which is O(N?). So to prove
the first part of the theorem it is only necessary to show that there are at
least O(N?) minimal line segments. Applying the lemma to the central
sublattice shows that there are O(N?) simple line segments in the central
sublattice. The line containing any of these simple line segments contains at
least four lattice points and hence at least two minimal line segments. This
proves the first half of the theorem.

The second half of the theorem will be proved by associating every
minimal triangle with a simple line segment, by showing that every simple
line segment is associated with at most two minimal triangles, and by
showing that there are two minimal triangles associated with most simple
line segments in the central sublattice.

Three simple line segments can be associated with every minimal triangle,
namely the line segments between the vertices of the triangle and the interior
point. Associate the triangle with the longest of these simple line segments.
(It is actually impossible for a minimal triangle not to have a unique longest
line segment but even if it were possible it would only effect the count by a
constant factor.) It will now be shown that for any given simple line segment
there are at most two minimal triangles associated with it.

Let AD be a simple line segment and let ABC be a triangle which contains
only the lattice point D. In particular the triangle 4BD has no lattice points

Fic. 1. Points 4, B, D, and E with parallel lines.
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Fic. 2. Points 4, B, F, C, G, and D.

in it. Let E be the lattice point which make ABED a parallellogram. By
rotational symmetry ABED has no lattice points inside. All lattice points can
be thought of as lying on lines parallel to AD. The distance between A and D
is also the distance between adjacent lattice points on each of the other lines.
Since ABED has no other points in it (including on the edges), the points B
and £ must lie on the line closest to the line which contains 4 and D (see
Fig. 1). By symmetry, C must also lie on the other line closest to AD. There
are at most four points on these two lines which are at least as close to D as
A (labelled F, B, G, and C in Fig. 2). Only the two furthest from A (B and
C) make an acceptable triangle. If the line segment AD happens to be
parallel to one of the axes then only two points on the nearby lines are close
to D as 4 (labelled B and C in Fig. 3) and they do not make an acceptable
triangle. For all other simple segments AD there is a minimal triangle
containing D. There is a second possible triangle associated with AD which
has A4 as the interior point. This shows that there are at most O(N?) minimal
triangles.

FiG. 3. The failing case.
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Finally the triangles associated with the simple line segments in the central
sublattice do not extend beyond the boundary of the lattice. Of the O(N?)
simple line segments in the central sublattice, there are only O(N) of the
failing kind and so that there are at least O(N?) minimal triangle.

The theorem is also true for equilateral triangular lattices since a
triangular lattice with N points in it contains a diamond with N/2 points in it
which is projectively equivalent to a square.

6. CONCLUSIONS

This paper shows that a convexity constraint in two independent variables
is rather more complex than the corresponding constraint in one dimension.
The cost of determining whether a given set of data has a convex inter-
polation is O(N log N) in most cases. For variable z values the cost of deter-
mining the minimal linear inequalities could be O(N?) in the worst case and
appears to be O(N*log N) in the average case. The number of independent
linear constraints can vary from zero to O(N’). Unfortunately the expected
number of constraints seems to be O(N?log N). The points have to be
arranged very carefully to obtain a significant reduction in the number of
independent linear constraints. Even a square lattice has O(N?) constraints.
This would indicate that convexity constraints in two independent variables
are computationally intractable for large data sets.
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